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A lubrication analysis is presented for the near-contact axisymmetric motion of
spherical drops covered with an insoluble non-diffusing surfactant. Detailed results
are presented for the surfactant distribution, the interfacial velocity, and the gap width
between the drop surfaces. The effect of surfactant is characterized by a dimensionless
force parameter: the external force normalized by Marangoni stresses. Critical values
of the force parameter have been established for drop coalescence and separation.
Surfactant-covered drops are stable to rapid coalescence for external forces less than
4πkTac0, where c0 is the surfactant concentration at the edge of the near-contact
region and a is the reduced drop radius.

For subcritical forces, the behaviour of surfactant-covered drops is described by two
time scales: a fast time scale characteristic of near-contact motion between drops with
clean interfaces and a slow time scale associated with rigid particles. The surfactant
distribution evolves on the short time scale until Marangoni stresses approximately
balance the external force. Supercritical values of the external force cannot be bal-
anced; coalescence and separation occur on the fast time scale. The coalescence time
normalized by the result for drops with clean interfaces is independent of the viscosity
ratio and initial gap width.

Under subcritical force conditions, a universal long-time behaviour is attained on
the slow time scale. At long times, the surfactant distribution scales with the near-
contact region and the surface velocity is directed inward which impedes the drop
approach and accelerates their separation compared to rigid particles. For drops
pressed together with a sufficiently large subcritical force, a shrinking surfactant-free
clean spot forms.

Surfactant-covered drops exhibit an elastic response to unsteady external forces
because of energy stored in the surfactant distribution.

1. Introduction
The adsorption of surfactants at interfaces strongly affects the behaviour of emul-

sion drops. Convection of surfactant generates surface tension gradients that modify
the stress balance on drop interfaces (Levich 1962). The complex nonlinear cou-
pling of surfactant transport and fluid motion produce a wide range of phenomena
that influence drop coalescence (Hodgson & Lee 1969), breakup (Stone & Leal 1990;
Pawar & Stebe 1996), and macroscopic emulsion flows (Pal 1993; Li & Pozrikidis 1997).

† Institute of Fundamental Technological Research, Polish Academy of Sciences, Swiȩtokrzyska
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Recent investigations are reviewed by Edwards, Brenner & Wasan (1991), Kralchevsky,
Danov & Ivanov (1996), and Maldarelli & Huang (1996).

Many investigations have explored the effects of surfactant on the drainage of thin
films (Kralchevsky et al. 1996; Ivanov 1988; see also references in Maldarelli & Huang
1996). Unfortunately, these analyses rely on ad hoc boundary and initial conditions
to describe the near-contact motion and coalescence of emulsion drops. Yiantsios
& Davis (1991) developed a description for the near-contact motion of slightly
deformable drops that rigorously couples the initial and boundary conditions of the
near-contact region to the outer flow. They considered fully mobile and tangentially
immobilized interfaces but surfactant effects were ignored.

In the absence of van der Waals attraction, rigid particles are stable to aggregation
but spherical drops with clean interfaces coalesce readily (Kim & Karrila 1991). Ad-
sorbed surfactant reduces interfacial mobility which affects near-contact motion and
may stabilize emulsion drops against coalescence; however, quantitative predictions
are unavailable. The goal of this work is to provide a theoretical description of these
phenomena for spherical surfactant-covered drops.

The assumptions of our analysis are stated in § 2. In § 3, the equations that describe
the relative drop motion and the evolution of surfactant on the drop surfaces are
derived. In § 4, a detailed analysis of the problem is presented and analytical results
are derived. The results of numerical calculations are presented in § 5. Concluding
remarks are given in § 6.

2. Assumptions
In this paper, we formulate a lubrication description for the axisymmetric near-

contact motion between two undeformed spherical drops with reduced radius
a = a1a2/(a1 + a2) that are separated by a small gap h0 � a. The drop surfaces
are covered by an insoluble non-diffusing surfactant with concentration c0 at the edge
of the near-contact region. The drops move with relative velocity U under the action
of a prescribed external force F that arises from buoyancy or from an imposed flow
field. The viscosity of the bulk fluid is µ and the viscosity of the drops is λµ.

Drop deformation becomes important when the dynamic pressure in the gap is
comparable to the capillary pressure σ0/a, where σ0 is the surface tension evaluated
at c0. Herein, the dynamic pressure results from Marangoni stresses and therefore
has the characteristic value ∆σ/h0, as shown in § 3.1, where ∆σ is the variation in
surface tension on the interface in the near-contact region. Thus, drop deformation
can be neglected only if ∆σ/σ0 � h0/a. Our investigation was restricted to drops with
a dilute coating of surfactant in order to explore the behaviour for ∆c/c0 = O(1),
where ∆c is the variation of surfactant concentration in the near-contact region. The
ideal equation of state is therefore appropriate:

σ(c)− σ(0) = −kTc, (2.1)

where σ(0) is the surface tension for clean interfaces, k is the Boltzmann constant and
T is the temperature.

At small gap widths, van der Waals attraction becomes important and induces rapid
coalescence. This occurs when the disjoining pressure becomes comparable to the
dynamic pressure, A/h3

0 ∼ ∆σ/h0, where A is the Hamaker constant and ∆σ ∼ kTc0.
With A ∼ kT (e.g. Russel, Saville & Schowalter 1989), van der Waals attraction

induces rapid coalescence for h0 < c
−1/2
0 . For dilute surfactant concentrations c0 = 1015

molecules/m2 (≈ 10−3 maximum coverage, e.g. Edwards et al. 1991) this corresponds
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to gap widths less than 30 nm. Similarly, drop deformation becomes significant for
h0 6 kTc0a/σ0. We conclude that the onset of coalescence precedes deformation

for small drops with a < σ0/(kTc
3/2
0 ). At room temperature with dilute surfactant

concentrations and σ0 ≈ 10−2 N m−1, this criterion corresponds to sub-100µm drops.
The diffusive flux of surfactant is uDc0 = Mτv , where M is the mobility of surfactant

molecules, τv ∼ µu/h0 is the viscous stress in the near-contact portion of the drop
interfaces, and u is the interfacial velocity. Given M ∼ (µd)−1, where d is the effective
hydrodynamic size of an adsorbed surfactant molecule, we conclude that surface
diffusion becomes important when uD/u ∼ (dh0c0)

−1 = O(1). For dilute surfactant
concentrations, and a hydrodynamic size of d = 40 nm which corresponds to a
typical surface diffusivity 10−10 m2 s−1 (e.g. Kralchevsky et al. 1996), we conclude
that surface diffusion becomes significant only for gap widths less than 30 nm. At
these very small gap widths, steric effects may arise from the finite size of adsorbed
surfactant molecules.

Surfactant solubility is characterized by c0 = KcB , where cB is the bulk concentra-
tion and K is the adsorption constant which provides an estimate of the fluid layer
that contains as much surfactant as adsorbed on the interface. For K � h0 surfactant
solubility in the continuous-phase fluid is unimportant.

For dilute surfactant concentrations, the effects of surface viscosity are unimportant
and therefore ignored.

3. Problem statement
3.1. Governing equations

The fluid velocity v and pressure p in the near-contact region are described by the
lubrication equations (Kim & Karrila 1991):

µ
∂2v

∂z2
=
∂p

∂x
, (3.1)

2πx

∫ h

0

v dz = πx2U, (3.2)

where x, z are cylindrical coordinates with vertical coordinate z measured from the
surface of a drop and radial coordinate x measured from the centre of the gap. The
fluid velocity v is in the x−direction and

h = h0 +
x2

2a
(3.3)

is the local gap width. The lateral extent of the near-contact region is (ah0)
1/2. The

gap width at x = 0 evolves according to

ḣ0 = −U, (3.4)

Herein, the relative velocity U and the external force F are positive for drops that
are pressed together and negative for drops that are pulled apart.

The fluid velocity is continuous across the interface. Thus, the flow drives a
circulation inside the drops and convects surfactant on the drop interfaces. Gradients
of surface tension (Marangoni stresses) arise and are balanced by the jump in
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tangential viscous stresses across the interfaces at z = 0 and z = h:

∂σ

∂x
=

[
−µ∂v

∂z

]
, (3.5)

where [g] = g(z+)− g(z−).

Under the assumptions that bulk solubility and surface diffusion are negligible, the
conservation equation that describes the surfactant distribution is (Kralchevsky et al.
1996)

∂c

∂t
= −1

x

∂ (xuc)

∂x
. (3.6)

The surfactant distribution satisfies the boundary conditions c = c0 at x → ∞ and
∂c/∂x = 0 at x = 0. The interfacial velocity u and the surfactant concentration are
nonlinearly coupled. Thus, a resistance formulation of the problem (specified relative
velocity) is not simply related to a mobility formulation (specified force). Herein, we
use a mobility formulation to find the relative motion of the drops under the action
of a prescribed force.

Although the problem is nonlinear, the Stokes equations and the boundary condi-
tions are linear for a given instantaneous distribution of surfactant. Thus, the fluid
velocity can be decomposed into a velocity field resulting from the relative motion of
drops with clean interfaces and a velocity field resulting from Marangoni stresses on
the interfaces of stationary drops. The external force is balanced by a contribution
from each of these velocity fields:

F = F0 + FM, (3.7)

where FM is the force generated by Marangoni stresses and

F0 = 6πµafU (3.8)

is the lubrication force between drops with clean interfaces moving with relative
velocity U. The coefficient f is the lubrication resistance.

For drops with clean interfaces, viscous stresses scale as µup/h0 in the gap and
µu/(h0m) within the drops, where up is the magnitude of the pressure-driven parabolic
flow in the gap, u is the tangential velocity on the drop interfaces, and m = λ−1ε−1/2

is the interfacial mobility with dimensionless gap width, ε = h0/a� 1. By continuity
of tangential stress, we have u/up ≈ m (Davis, Schonberg & Rallison 1989). Herein,
m� 1 is assumed; surfactant effects are less important for highly viscous drops with
m 6 O(1) because the low interfacial mobility inhibits the generation of Marangoni
stresses by displacement of surfactant. For m � 1, the velocity profile in the gap is
approximately flat with v = u and

u =
xU

2h
, (3.9)

according to (3.2) with an error of O(1/m). For ε1/2 � λ � ε−1/2, the lubrication
resistance is (Zinchenko 1982):

f =
21/2π2

16ε1/2
λ+ O(log ε). (3.10)
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For bubbles (λ = 0)

f = − 1
3

log ε+ B, (3.11)

where B depends on the size ratio; for equal-size bubbles, B = 1.078 (Kim &
Karrila 1991). For drops, the lubrication resistance and the results obtained herein
are independent of size ratio.

For stationary surfactant-covered drops, velocity gradients scale as u/h0 in the
gap as the result of the zero-net-flow constraint. Inside the drops, velocity gradients
scale as u/(ah0)

1/2. It follows that viscous stresses scale as µu/h0 in the gap and
µλu/(ah0)

1/2 = µu/(h0m) inside the drops. For m � 1, viscous stresses in the gap
balance Marangoni stresses to O(1/m) and (3.5) reduces to

kT
∂c

∂x
= −µ∂v

∂z
(3.12)

at the surface z = 0, where the equation of state (2.1) has been inserted and v is the
velocity field in the gap. The sign is changed for z = h.

For a given distribution of surfactant with U = 0, (3.1), (3.2), and (3.12) yield

∂p

∂x
= −2kT

h

∂c

∂x
(3.13)

and

v =
kT

µh

∂c

∂x

[
h2

12
−
(
z − h

2

)2
]
. (3.14)

Equation (3.13) indicates that the dynamic pressure resulting from Marangoni stresses
is O(∆σ/h0). It follows from (3.14) that the tangential velocity on the drop interfaces
is

u = −hkT
6µ

∂c

∂x
. (3.15)

Given that p = 0 outside the near-contact region, the force generated by Marangoni
stresses is

FM = 2π

∫ ∞
0

xpdx. (3.16)

Integrating (3.13), inserting the resulting expression for p into (3.16), integrating by
parts twice, and using the boundary condition c→ c0 as x→∞, we obtain

FM = 4πkTa

[
c0 −

∫ ∞
0

c
∂

∂x

(
1− h0

h

)
dx

]
. (3.17)

Neglecting the O(1/m) internal viscous stresses in the derivation of (3.12) induces
an error of the same magnitude in (3.17) which is therefore accurate to O(ε1/2) for
λ = O(1). For bubbles, the relative accuracy of (3.17) is O(ε log ε). F0 and FM are each
accurate to leading order in m.

Inserting the net interfacial velocity,

u =
xU

2h
− hkT

6µ

∂c

∂x
, (3.18)
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given by the linear superposition of (3.9) and (3.15) into (3.6) yields the evolution
equation for the surfactant distribution:

∂c

∂t
= −1

x

∂

∂x

[
xc

(
Ux

2h
− kTh

6µ

∂c

∂x

)]
, (3.19)

which satisfies the same boundary conditions as (3.6).
Equations (3.4), (3.7), (3.8), (3.17), and (3.19) form a closed set describing the near-

contact motion of the drops, starting from an initial gap width and distribution of
surfactant.

A pair of coupled evolution equations is obtained for the surfactant distributions
on drop interfaces with different equilibrium concentrations c1 and c2:

∂c1

∂t
= −1

x

∂

∂x

[
xc1

(
Ux

2h
− kTh

3µ

∂c1

∂x
+
kTh

6µ

∂c2

∂x

)]
. (3.20)

∂c2

∂t
= −1

x

∂

∂x

[
xc2

(
Ux

2h
− kTh

3µ

∂c2

∂x
+
kTh

6µ

∂c1

∂x

)]
, (3.21)

The force generated by Marangoni stresses is given by (3.17) with the substitution
c = 1

2
(c1 + c2).

3.2. Dimensionless formulation

In what follows, a constant external force is assumed. It is convenient to introduce
the dimensionless variables

ε =
h0

a
; y = 1− h0

h
; c̄ =

c

c0

. (3.22)

In these variables, the extent of the near-contact region is invariant and finite:
0 6 y 6 1. The initial dimensionless gap is ε0.

According to (3.17),

FM 6 Fs, (3.23)

where

Fs = 4πkTac0. (3.24)

We therefore introduce the dimensionless forces

F̂ =
F

Fs
, F̂M =

FM

Fs
. (3.25)

There are two relevant velocity scales and two time scales for the problem:

Up =
Fε

6πµa
, U0 =

F

6πµaf
; (3.26)

τp = 6πµa2/|F |, τ0 = 3
4
(2ε0)

1/2π3a2µλ/|F |; (3.27)

where Up and U0 are, respectively, the near-contact relative velocity between rigid
particles and between drops with clean interfaces. The time scale τp (Stokes time)
characterizes the near-contact motion between rigid particles and τ0 is the coales-
cence time for drops with clean interfaces. For m � 1, the ratio of the time scales
τp/τ0 = 4

√
2π−2m is large.
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In terms of the dimensionless variables, the interfacial velocity (3.18) becomes

u

U
=

(
y(1− y)

2ε

)1/2(
1− 1

2F̂Ū

∂c̄

∂y

)
(3.28)

and the equations of motion (3.4), (3.7), (3.8), (3.17), and (3.19) become

∓ 1

ε

dε

dt̄
= Ū, (3.29)

εfŪ = 1− F̂M

F̂
, (3.30)

F̂M =

∫ 1

0

(1− c̄)dy, (3.31)

and

∓ 1

Ū

∂c̄

∂t̄
= y(1− y)

∂c̄

∂y
+ (1− y)2

[
∂(c̄y)

∂y
− 1

2F̂Ū

∂

∂y

(
c̄y
∂c̄

∂y

)]
, (3.32)

where t̄ = t/τp and Ū = U/Up. At y = 1, we have c̄ = 1; the boundary condition
∂c̄/∂x = 0 at x = 0 is automatically enforced for ∂c̄/∂y non-singular at y = 0. In

(3.29) and (3.32), the minus sign applies for F̂ > 0 and the plus sign for F̂ < 0.

4. Analytical results
4.1. Short-time behaviour

According to (3.30) Ū � 1 unless FM ≈ F . For a uniform initial distribution of
surfactant, FM = 0 at t = 0, thus Ū � 1 for short times. According to (3.10), (3.11),
and (3.30), F̂Ū ∼ ε−1/2 for viscous drops and F̂Ū ∼ ε−1/ log ε−1 for bubbles. Thus to
leading order, (3.28) reduces to (3.9) indicating that the tangential velocity profile is
unaffected by the surfactant distribution. Surfactant is passively convected; however,
the non-uniform distribution of surfactant generates Marangoni stresses associated
with the force FM . For m � 1, the viscosity ratio merely sets the time scale for the
short-time behaviour.

The nonlinear term in (3.32) is O(ε1/2) for drops and O(ε log ε) for bubbles. By
neglecting this term, (3.32) reduces to a first-order linear equation. For a uniform
initial distribution of surfactant c0, the solution is

c = c0q, (4.1)

where

q =
ε

[ε2 +
(
ε2

0 − ε2
)

(1− y)2]1/2
. (4.2)

For an arbitrary initial distribution of surfactant c0g(y),

c = c0 q g
(
1− (1− y)qε0/ε

)
. (4.3)

These results indicate that the surfactant concentration at the centre of the near-
contact region varies linearly with the gap.

By inserting (4.3) into (3.31), we find the short-time approximation for the force
generated by Marangoni stresses:

F̂MS (ε) =

∫ 1

0

[
1− q g

(
1− (1− y)qε0/ε

)]
dy. (4.4)
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For a uniform initial distribution of surfactant,

F̂MS = 1− ε

(ε2
0 − ε2)1/2

log
ε

ε0 − (ε2
0 − ε2)1/2

, ε 6 ε0, (4.5)

F̂MS = 1− ε

(ε2 − ε2
0)

1/2
arcsin

(ε2 − ε2
0)

1/2

ε
, ε > ε0, (4.6)

which reduce to a linear dependence on gap width for small displacements:

F̂MS =
1

3

(
1− ε

ε0

)
+ O

(
1− ε

ε0

)2

, ε/ε0 ≈ 1. (4.7)

The force generated by Marangoni stresses is monotonic in gap width and has the
limiting values

F̂MS = 1 +
ε

ε0

log
ε

2ε0

+ O(ε/ε0)
3, ε/ε0 � 1, (4.8)

F̂MS = 1− π

2
+
ε0

ε
+ O(ε0/ε)

2, ε/ε0 � 1. (4.9)

The short-time near-contact velocity of the drops is obtained by inserting F̂M = F̂MS

into (3.30).
By integrating (3.30) with (3.10) for viscous drops we obtain

t(ε) = ±τ0

∫ 1

ε/ε0

F̂

F̂ − F̂MS (ε0s)
ds1/2. (4.10)

The plus sign applies for F̂ > 0 and the minus sign for F̂ < 0. For bubbles the
corresponding formula is obtained using (3.11).

4.1.1. Critical values of force

From the general upper bound (3.23), supercritical external forces F̂ > 1 cannot
be balanced by Marangoni stresses. The limiting formula (4.8) for a uniform initial
distribution of surfactant is consistent with this general prediction. According to
(4.10), t(0) 6 τ0F̂/(F̂ − 1). Thus for F̂ > 1, coalescence occurs on the times scale τ0

for any initial surfactant distribution.
No general lower bound exists for the force generated by Marangoni stresses when

drops are pulled apart by an external force. For a uniform initial distribution of
surfactant, the drops separate on the time scale τ0 for supercritical pulling forces
F̂ < 1 − 1

2
π, according to (4.9)–(4.10). A complementary result for F̂ < 1 − 1

2
π is

obtained from the long-time behaviour in § 4.2.2.
Equation (4.10) indicates that for subcritical values of the external force

1− 1
2
π < F̂ < 1, (4.11)

the force balance

F̂MS (εs) = F̂ (4.12)

is established at ε = εs. Equation (3.30) yields U/U0 ≈ 0 at ε = εs, provided that

F̂M ≈ F̂MS . According to the analysis presented in § 4.2, the stable gap εs corresponds
to the transition from rapid gap evolution on the short time scale τ0 to slow evolution
on the long time scale τp � τ0.

For a uniform initial distribution of surfactant, the stable gap width is determined
by (4.5) and (4.6). The asymptotic formulae (4.8) and (4.9) indicate that the stable
gap vanishes for F̂ → 1 and diverges for F̂ → 1− 1

2
π.
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4.1.2. Rapid coalescence

For F̂ > 1, the entire evolution is well described by the short-time equations. For
drops, the coalescence time

τ = t(0) (4.13)

can be accurately estimated from (4.10). Thus, τ scales with τ0 and τ/τ0 is independent
of the initial gap and the viscosity ratio.

For a uniform initial surfactant distribution FM > 0, thus τ > τ0, according to
(3.30). An analysis of (4.10) indicates that τ ≈ τ0 for a large external force:

τ

τ0

= 1 + 0.4897F̂−1 + 0.3407F̂−2 + O(F̂−3), F̂ � 1, (4.14)

and that τ diverges for a near-critical force:

τ

τ0

=
π

2

1

[−(F̂ − 1) log(F̂ − 1)]1/2
+ O(F̂ − 1), F̂ → 1. (4.15)

The formula for bubbles corresponding to (4.10) depends on the initial gap and and
size ratio. For bubbles, τ/τ0 ∼ − log(F̂ − 1) for F̂ → 1.

4.2. Long-time stable behaviour

4.2.1. Governing equations

For subcritical values (4.11) of the external force the hydrodynamic force induced
by the Marangoni stresses approximately balances the external force at long times,

F̂ ≈ F̂M, (4.16)

and the interparticle velocity is significantly reduced according to the discussion in
§ 4.1.1. In this regime, (3.30) and (3.31) can be replaced by

F̂ =

∫ 1

0

(1− c̄)dy, (4.17)

and evolution of the surfactant distribution is described by (3.32) with Ū determined
by (4.17). The gap width does not enter the long-time equations (3.32) and (4.17) but
is determined by (3.29). The long-time evolution is independent of the viscosity ratio
and initial gap width.

To determine the relative velocity Ū and examine the stability of the long-time
solution, we calculate the rate of change of F̂M by integrating both sides of (3.32)
with respect to y and inserting (3.31):

± dF̂M
dt̄

= I1 Ū −
I2

F̂
, (4.18)

where

I1 =

∫ 1

0

[
1− 2(1− y)2

]
c̄ dy, I2 =

∫ 1

0

(y − 1
2
)c̄2 dy. (4.19)

For constant F̂ , (4.16) and (4.18) yield

Ū =
I2

I1F̂
. (4.20)

It follows that Ū = O(1) and the long-time evolution is on the rigid-particle time
scale τp except for unusual surfactant distributions with I1 ≈ 0 or for I2/F̂ � 1.
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Evolution with F̂ � 1 generates c̄(y) ≈ 1 so that I2/F̂ = O(1); relaxation processes

with I2/F̂ � 1 are discussed in § 4.3.1.
For Ū = O(1), equation (3.29) indicates that t/τp = O(log(ε/ε0)). Thus, drops that

are pushed together by an external force F̂ < 1 do not coalesce; however, drop
separation occurs in a finite time whether or not the critical pulling force is exceeded.

For F̂ > 0 and c̄(y) an increasing function of y (e.g. c̄ resulting from the short-time
evolution) (4.19) and (4.20) imply that Ū > 0. For F̂ < 0 and c̄(y) decreasing, Ū > 0
provided that I1 > 0.

The stability of the long-time force balance (4.16) is analysed by considering the
relation obtained from (3.30) and (4.18):

± F̂ d

dt̄
(εfŪ) = −I1Ū +

I2

F̂
. (4.21)

Inserting expansions around the long-time solutions,

c̄ = c̄L + δc̄, Ū = ŪL + δŪ, (4.22)

into (4.21) yields

±
[
F̂

d

dt̄

(
εfŪL

)
+ F̂

d

dt̄

(
εfδŪ

)]
= −I1(c̄L)δŪ − I1(δc̄)ŪL +

I2(δc̄)

F̂
, (4.23)

where unperturbed quantities on the right-hand side have been eliminated by (4.20).

We consider δc̄ orthogonal to perturbations with
∫ 1

0
δc̄ dy = 0 because only these

affect the force balance. Equation (4.23) simplifies because d (εf) /dt̄ ∼ ε1/2 according
to (3.29) and δc̄ ∼ ε1/2ŪL according to (3.30) and (3.31). Thus, at leading order

± F̂εf d

dt̄
δŪ = −I1(c̄L)δŪ. (4.24)

The result indicates that perturbation δŪ decay on the time scale τ0 and the long-time
force balance (4.16) is restored provided that

I1(c̄L) > 0. (4.25)

The polynomial of the integrand in I1, (4.19), changes sign within the integration
domain, thus condition (4.25) is not guaranteed. However, it is satisfied for distribu-
tions with reduced concentrations at the centre of the near-contact region, such as
those that result from the short-time approach of the drops. For a sufficiently small
increase of the concentration at the centre of the near-contact region condition (4.25)
is also satisfied.

With Ū = O(1), relation (4.16) is accurate to O(ε1/2) for viscous drops, as indicated
by (3.30) and (3.31). For bubbles, (4.16) is accurate to O(ε log ε). Thus, according
to the discussion below (3.17), expressions (3.31) and (4.17) have errors of the same
order. It follows that the long-time approximation (3.29), (3.32), and (4.17) is accurate
to the same order as the full description.

4.2.2. Similarity solution

On the assumption that the long-time solution tends to a self-similar form, a time-
independent solution of (3.32) is sought. After introducing the change of variable,

C =
c̄

4ŪF̂
, (4.26)
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(3.32) is independent of F̂ and Ū:

0 = y
dC

dy
+ (1− y)

[
d(Cy)

dy
− 2

d

dy

(
Cy

dC

dy

)]
. (4.27)

The concentration profile is obtained by the normalization c̄(y) = C(y)/C(1), the
force from (4.17), and the interfacial velocity is obtained from (3.28). According to
(4.26),

Ū =
1

4F̂C(1)
, (4.28)

and the rescaled concentration C has the same sign as F̂ .
Expanding C(y) in a power series around y = 0 and inserting into (4.27) yields

C(y) = C(0) + 1
2
y + O(y2), y → 0. (4.29)

For a sufficiently strong subcritical pushing force, a clean spot forms on the drop
interfaces with C = 0 for y 6 y0. A power series expansion around y = y0 yields

C(y) =
1− 1

2
y0

1− y0

(y − y0) + O (y − y0)
2 , y → y0. (4.30)

The concentration profile is non-analytic around y = 1:

C(1)− C(y) ∼ (1− y)α, y → 1, (4.31)

where α = 1 − (2C(1))−1. Except for F̂ ≈ 1, the radius of convergence for these
expansions is less than unity, precluding the possibility of a single series expansion
for the concentration profile on the entire domain: 0 6 y 6 1.

According to (4.26), |C| � 1 for small external forces. A perturbation solution for

|F̂ | � 1 is obtained from an expansion of C(y) in powers of 1/C(0):

C(y) = C(0) + C1(y) +
1

C(0)
C2(y) + O

(
1

C(0)

)2

. (4.32)

Inserting (4.32) into (4.27) yields

C1(y) = 1
2
y, (4.33)

C2(y) = −1

4

[
y +

∫ y

0

t−1 log(1− t) dt

]
, (4.34)

and C2(1) = −1/4 + π2/24. Then from (4.17) and (4.28) we find that

Ū = 1− 2F̂ + O(F̂2) (4.35)

and

c̄(0) = 1− 2F̂ + O(F̂2). (4.36)

Equation (4.35) indicates that rigid-particle lubrication is recovered in the small force
limit.

For F̂ → 1, y0 → 1 which is consistent with (4.17) and (4.30). Combining (4.30)
and (4.31) by enforcing C(y0) = 0 and matching the derivative at y = y0 yields

C(y) = 1−
(

1− y
1− y0

)1/2

+ O(1− y). (4.37)
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This result together with (4.28) indicates that for F̂ → 1, the long-time relative velocity
of the drops is considerably less than that for rigid particles:

Ū = 1
4

+ O(1− F̂). (4.38)

A matched asymptotic expansion of the long-time similarity solution is derived
in Appendix A for a near-critical pulling force. The asymptotic formula (A 10) and
(4.28) indicate that Ū diverges for |C(0)| → 0. Thus, according to (A 12) and (A 20),
the critical pulling force for surfactant-covered drops is

F̂ = 1− 1
2
π. (4.39)

For F̂ below this critical value, the long-time similarity solution cannot be attained
for any initial distribution of surfactant. The same critical value was obtained from
the short-time approximation in § 4.1. This coincidence follows from the fact that (4.2)
equals the leading-order outer solution (A 4) of the long-time similarity equation in
the limit ε/ε0 →∞.

The relative velocity of the drops in the limit of critical pulling force is obtained
by inserting relations (A 10), (A 12), and (A 22) into (4.28), which yields

Ū =
1

a0 (2π − 4) fs(∆F̂)
, (4.40)

where ∆F̂ = F̂ − 1 + 1
2
π, a0 is given by (A 9), and fs(∆F̂) is obtained by inverting

(A 20). Inserting the first-order iterative solution (A 23) yields

Ū =
− log ∆F̂ + 9

2
b/a0

9 (π − 2) ∆F̂
, (4.41)

where b is given by (A 21). Thus, Ū diverges as the critical pulling force is attained.

Combining (4.28), (4.40), (A 10), and (A 12) yields a relation between the external
force and the surfactant concentration at the centre of the near-contact region:

c̄(0) =
1

a0

[
fs(∆F̂)

]1/3
. (4.42)

The divergence of c̄(0) at F̂ → 1− 1
2
π is weaker than the divergence of Ū.

The asymptotic formulae (4.40) and (4.42) can be combined with the expansions
(4.35) and (4.36) to construct two-point approximations for Ū and c̄, as discussed in
Appendix B.

Equation (4.27) can be rearranged to yield

d2C

dy2
=

1

2y(1− y)

{
2

(
1

2
− dC

dy

)
(1− y) +

y

C

dC

dy

[
2

(
1

2
− dC

dy

)
(1− y) + 1

]}
. (4.43)

The result indicates that d2C/dy2 = [4C(1− y)]−1 for dC/dy = 1
2

and d2C/dy2 =

[2y]−1 for dC/dy = 0. Given the initial conditions (4.29) or (4.30), it follows that

dC

dy
>

1

2
, y0 6 y 6 1, F̂ > 0, (4.44)



Surfactant-covered drops 271

where y0 > 0 and

0 <
dC

dy
6

1

2
, 0 6 y 6 1, F̂ < 0. (4.45)

According to (3.28), these results and definition (4.26) imply that

u(y) 6 0, y0 6 y 6 1. (4.46)

Surfactant backflow occurs because the long-time self-similar concentration profile
scales with the size of the lubrication region. Surfactant backflow impedes the ap-
proach of surfactant-covered drops and accelerates their separation.

4.3. External force fluctuations

The foregoing analyses can be generalized to variable external force conditions; two
examples are considered below.

4.3.1. Relaxation

During near-contact motion, energy is stored in the non-uniform surfactant distri-
bution. To explore the reversibility of the drop motion, we consider a time-dependent
external force:

F̂(t) = F̂ , −tR < t 6 0,

F̂(t) = 0, t > 0,

}
(4.47)

with a uniform surfactant distribution at t = −tR . For F = 0, the long and short time
scales are based on the characteristic Marangoni stress:

τsp = 6πµa2/Fs, τs0 = 3
4
(2ε0)

1/2π3a2µλ/Fs, (4.48)

where ε0 is the gap width at t = 0 and Fs is given by (3.24). For t = O(τs0), the
relaxation process is described by the short-time equations with the initial surfactant
distribution given at t = 0. The gap width evolves according to (4.10) which, for
F̂ = 0, reduces to

t(ε) = τs0

∫ ε/ε0

1

1

F̂MS

ds1/2. (4.49)

According to (4.12), the short-time relaxation continues until

F̂MS (ε) = 0. (4.50)

The entire relaxation process is characterized by short-time behaviour if the sur-
factant distribution at t = 0 corresponds to the distribution obtained by short-time
evolution of a uniform profile, (4.1)–(4.2). In this case, the surfactant distribution
evolves backwards to a uniform profile and final gap width ε = εR , where εR is the
gap width at t = −tR . Thus, for rapid displacements (tR � τp), the evolution of
surfactant-covered drops is reversible and the behaviour is analogous to a damped
nonlinear spring. For small displacements, εR − ε decays exponentially with time
constant 3

2
τs0 according to (4.49) and (4.7).

For general surfactant distributions, the short-time relaxation is followed by a slower
long-time relaxation on the time scale τsp which is characterized by F̂M ≈ F̂ = 0.
According to the discussion in § 4.2.1, the long-time evolution is described by (3.29)
and (3.32) (with t and U rescaled using Fs instead of F) and the condition∫ 1

0

(1− c̄) dy = 0. (4.51)
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The long-time relative velocity given by (4.20) becomes

U

Usp

=
I2

I1

, (4.52)

where Usp = εFs/(6πµa). The result indicates that U/Usp = O(1) except for I1 ≈ 0.

4.3.2. Small force fluctuations

At long times, Marangoni stresses balance the external force. The initial response
to an external force fluctuation

F̂(t) = F̂ , −tR < t 6 0,

F̂(t) = F̂ + δF̂, t > 0

}
(4.53)

is described by the short-time solution. The stable gap width εs and surfactant
distribution adjust on the time scale τ0 until the external force is again balanced by
Marangoni stresses. By inserting ε = ε0 + δε and (4.53) into (4.1)–(4.4) and (4.12), we
obtain

− 1

ε0

δε

δF̂
=

1

I1

, (4.54)

where I1 is given by (4.19) with c̄(y) corresponding to a long-time surfactant dis-
tribution for F̂ . This result can also be derived from (4.18) by inserting (3.29) and
neglecting I2/F̂ consistent with the short-time approximation. For I1 > 0, (4.54) de-
scribes short-time adjustment of the gap; for I1 < 0, the long-time solution is unstable,
according to (4.25).

The result (4.54) requires only that (4.16) applies; it is not necessary that the long-
time similarity solution be attained. If the long-time similarity solution is established,
we obtain the asymptotic formulae

− 1

ε0

δε

δF̂
= 3 + 10

3
F̂2 + O(F̂)3, F̂ � 1, (4.55)

− 1

ε0

δε

δF̂
=

1

1− F̂
+ O(1), F̂ → 1, (4.56)

from (4.26), (4.32), and (4.37) and

− 1

ε0

δε

δF̂
=

1

3∆F̂ + (b1 − 3b)fs(∆F̂)
+ O(1), F̂ → 1− 1

2
π, (4.57)

using (A 20), (A 22), and (A 26) with b and b1 given by (A 21) and (A 27). For F̂ close
to the critical values, (4.56)–(4.57) indicate that the stable gap width is very sensitive
to small fluctuations in the external force. The asymptotic formulae (4.55) and (4.57)
can be combined to yield a two-point approximation, as discussed in Appendix B.

5. Numerical results
Equations (3.29)–(3.32) were numerically integrated using fixed collocation points

in the dimensionless variable y. The resulting set of first-order ordinary differential
equations is stiff; a backwards differentiation algorithm was used for time stepping
(Hall & Watt 1976). Spatial derivatives of the surfactant concentration were evaluated
using a cubic spline. The initial surfactant distribution c̄(y, 0) and initial gap width ε0

are needed to fully specify the problem for given values of the parameters F̂ and λ.
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Figure 1. (a) Gap width history and (b) Marangoni force F̂M versus gap width for drops pushed

together with different values of F̂ (as labelled); uniform initial distribution of surfactant, ε0 = 0.01,
and λ = 1 (under these conditions, τp/τ0 = 5.73): numerical solution (solid curves), short-time
approximation (4.5)–(4.6) and (4.10) (dotted curves), slopes of long-time solution (dashed lines),
rigid particle formula (dashed-dotted line).

The long-time similarity solution was obtained by numerical integration of (4.27)
as an initial value problem with initial condition (4.29) or (4.30).

5.1. Evolution of gap width and Marangoni stresses

The gap width history for drops pushed together by a constant force is depicted in
figure 1 (a). The Marangoni force is shown as a function of gap width in figure 1 (b).
The corresponding results for drops that are pulled apart are shown in figure 2.

Two distinct behaviours are observed, corresponding to sub- and supercritical
values of the external force F̂ . For supercritical values F̂ > 1, the drops coalesce
on the time scale τ0, the coalescence time for drops with clean interfaces; for drops
pulled apart with F̂ < 1 − 1

2
π, the drops separate on this time scale. For subcritical

values 1− 1
2
π < F̂ < 1, the results show a transition from a short- to a stable long-time

behaviour at t ≈ τ0.
In agreement with the analysis presented in § 4.1, the system evolves on the time

scale τ0 as long as the external force F̂ is not balanced by F̂M , the force generated
by Marangoni stresses. If, in addition t� τp, the evolution is accurately described by
the short-time approximation.
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Figure 2. Same as figure 1 but for drops pulled apart, with ε0 = 0.0005 (τp/τ0 = 25.6).

10

8

6

4

2

0 0.2 0.4 0.6 0.8 1.0

ô
ô0

1/F̂

Figure 3. Drop coalescence time versus 1/F̂; uniform initial distribution of surfactant: results
from short-time solution (4.13) (solid curve), asymptotic formulae (4.14) and (4.15) (dashed curves).

For supercritical force F̂ > 1, the results shown in figure 1 (a) indicate that the
short-time approximation is indistinguishable from the numerical solution, except for
F̂ very close to 1. Thus, the coalescence time is accurately predicted by the short-time
approximation (4.13) shown in figure 3. The results indicate that drop coalescence
time is weakly affected by surfactant for 1/F̂ < 0.8 but diverges for F̂ → 1.
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Figure 5. Long-time similarity solution for relative drop velocity Ū = U/Up (solid curve) and
surfactant concentration at centre of near-contact region c̄(0) = c(0)/c0 (dashed curve) versus force
parameter; approximations described in Appendix B (dotted curves). Insets show behaviour for

F̂ ≈ 0.61.

For 1 − 1
2
π < F̂ < 1, the results presented in figures 1 and 2 indicate that, to

within the O(ε1/2) accuracy of our analysis, a balance between Marangoni stresses
and the external force is achieved on the time scale τ0, when the transition to the
long-time behaviour occurs. For drops that are pulled apart, the force balance is
gradually lost with increasing gap width, consistent with our analysis. A comparison
of the short-time and numerical solutions presented in figures 1 and 2 indicate that
the stable gap width corresponding to the transition is accurately predicted (4.12).
The stable gap width εs is depicted in figure 4. As predicted by (4.8)–(4.9), εs vanishes
at the critical pushing force and diverges at the critical pulling force.

In § 4.2.2 it was assumed that after the force balance (4.16) is established, the system
evolves on the long time scale τp towards the similarity solution. The results in figures
1 and 2 support this assumption. In figure 5, the relative drop velocity obtained from
the long-time similarity solution is shown as a function of F̂ . In agreement with the
result of § 4.2.2, the long-time drop velocity is smaller than the corresponding particle
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Figure 6. Sensitivity of gap width to force fluctuations versus F̂; obtained from (4.54) for long-time
similarity solution (solid curve), approximation described in Appendix B (dotted curve), and asymp-
totic formula (4.56) (dashed curve).

velocity for F̂ > 0 and is larger for F̂ < 0. Also shown is the surfactant concentration
at the centre of the near-contact region. The two-point approximations described in
Appendix B are accurate within their range of validity.

The results shown in figure 5 indicate that a clean spot forms in the near-contact
region for F̂ > 0.61. A clean spot on an isolated sedimenting drop forms for F̂ > 1.
This example illustrates that variations of surfactant concentration in the near-contact
region and the outer region of the interface are generally both O(F̂).

The inset shows that concentration and velocity exhibit hysteretic behaviour in
a minute parameter range at the onset of clean spot formation. The stability of
the long-time force balance was shown in § 4.2.1; however, the similarity solution
apparently has an instability that evolves on the time scale τp for the parameter range
shown in the inset of figure 5.

The response of the long-time similarity solution to fluctuations in the external
force was obtained by inserting the corresponding concentration profile into (4.54).
The results shown in figure 6 indicate that the solution becomes very sensitive to
fluctuations in the external force near the critical values for F̂ . The increased sensitivity
for F̂ > 0.61 corresponds to the formation of a clean spot in the near-contact region.

5.2. Surfactant concentration and interfacial velocity profiles

5.2.1. Supercritical force

Drop coalescence and separation occur on the short time scale τ0 for supercritical
values of the force parameter. Surfactant concentration profiles are depicted in figure
7 for the critical values F̂ = 1 and F̂ = 1− 1

2
π; initially, the surfactant concentration

is uniform.
The results depicted in figure 7 (a) indicate that the surfactant distribution broadens

continuously on the length scale of the lubrication region when the drops are pressed
together. At contact, surfactant is completely displaced from the near-contact region.
When the drops are pulled apart, surfactant accumulates in the near-contact region,
as illustrated in figure 7 (b).

Initially, the short-time approximation agrees with the numerical calculations as
shown in figure 7. The interfacial velocity profile (not shown) is accurately described
by (3.9) corresponding to plug flow in the gap. According to the short-time approx-
imation, the surfactant concentration c̄ at x = 0 equals the normalized gap width
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Figure 7. Surfactant concentration profiles at different gap widths ε/ε0 (as labelled); with uniform

initial distribution of surfactant: (a) F̂ = 1, ε0 = 0.01; (b) F̂ = 1 − 1
2
π, ε0 = 0.0005. Numerical

results for λ = 1 (solid curves), short-time approximation (4.1)–(4.2) (dashed curves).

ε/ε0. The results shown in figure 7 (a) indicate that the short-time approximation is
uniformly valid for all gap widths at x = 0 for drops that are pressed together. For
drops that are pulled apart, the short-time approximation eventually breaks down at
the centre of the near-contact region. This discrepancy corresponds to the onset of
the concentration boundary layer at x = 0 which forms at long times according to
the analysis presented in Appendix A.

The comparison of the numerical solution with the short-time approximation
indicates that at short times, the surfactant distribution is nearly independent of the
force parameter, viscosity ratio, and initial gap width. The results shown in figure 7
correspond to viscosity ratio λ = 1; the short-time approximation is more accurate
for smaller values of λ (or smaller initial gap widths) because the short and long
time scales are further separated. The accuracy of the short-time approximation is
much better for super-critical values of the force parameter F̂ > 1 or F̂ < 1 − 1

2
π.

For drops that are pushed together by a super-critical force, the entire evolution is
accurately described by the short-time approximation. As discussed in § 4.1, the short-
time behaviour is characterized by passive convection of the surfactant; deviations
of the short-time approximation from the numerical results are a manifestation of
surfactant redistribution by Marangoni stresses.
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Figure 8. Profiles of (a) surfactant concentration and (b) interfacial velocity at different times t/τ0

(as labelled) for drops pushed together with F̂ = 0.4, λ = 1, ε0 = 0.01 (τp/τ0 = 5.73), and uniform
initial distribution of surfactant: numerical solution (dashed curves), long-time asymptotic solution
(solid curves).

5.2.2. Sub-critical force

Evolution of the surfactant concentration and interfacial velocity profiles under
sub-critical constant force conditions are depicted in figures 8–10. The long-time
asymptotic surfactant concentration and interfacial velocity profiles are shown in
figures 11 and 12.

Initially, surfactant redistributes on the fast time scale. At t = 0, the interfacial
velocity is given by formula (3.9). The interfacial velocity profiles shown in figures 8–10
indicate that the velocity remains close to the initial profile for t < τ0. It follows that
the surfactant distribution is accurately described by the short-time approximation.
A transition to the long-time behaviour is observed for t ≈ τ0 during which the force
balance (4.16) is achieved; the exact time of the transition depends on F̂ . Thereafter,
the long-time similarity solution is attained on the slow time scale τp.

The clean spot that forms for subcritical F̂ scales with the extent of the lubrication
region and therefore shrinks as the gap decreases. Formation of a clean spot is
illustrated in figure 9. Fully developed surfactant-free regions are clearly visible
in figure 11 for the long-time concentration and velocity profiles corresponding to
F̂ > 0.61.

For all subcritical values of the force parameter, the interfacial velocity is directed



Surfactant-covered drops 279

(a)

(b)

c
c0

x/(ah0)
1/2

ε1/2u
U

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10

0.5

80

20
3

0

0.5

3

80

20

0.5

0

–0.5

–1.0

–1.5

–2.0
0 2 4 6 8 10

Figure 9. Same as figure 8 but for F̂ = 0.9.

inward at long times except where c = 0, as predicted by (4.46) and illustrated by
the results shown in figures 8–12. The backflow velocity diverges at the critical values
for F̂ . Where c = 0, the velocity is given by (3.9); the discontinuity of u, apparent in
figure 9 (b), is an artifact of the lubrication approximation.

5.3. Relaxation

Figures 13 and 14 show the response of the system to an unsteady external force (4.47)
under conditions where the long-time similarity behaviour is established at t = 0. The
results illustrate the two-time-scale behaviour. The initial relaxation is well described
by the short-time approximation: the gap width and surfactant distribution quickly
evolve until the force balance (4.50) is approximately established as the results shown
in figure 13 indicate. Following the short-time relaxation, the concentration profiles
approximately satisfy (4.51). Equilibration of the residual concentration gradients
relies on pressure-driven lubrication flow which occurs on the slow time scale. A
slow gap width adjustment occurs as the uniform surfactant distribution is gradually
attained.

6. Conclusions
A theory has been formulated for near-contact motion of spherical drops with a

dilute strongly adsorbed non-diffusing surfactant.
It has been shown that the system evolves on two time scales: a fast time scale τ0
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Figure 10. Same as figure 8 but for drops pulled apart with F̂ = −0.2
and ε0 = 0.0005 (τp/τ0 = 25.6).

characteristic of the near-contact motion between drops with clean interfaces and a
slow time scale τp associated with rigid particles. Evolution occurs on the fast time
scale unless the force FM generated by Marangoni stresses balances the external force
F . On the fast time scale surfactant is passively convected. Marangoni stresses resist
the relative motion of the drops but do not appreciably redistribute the surfactant.
An analytical solution of the governing equations has been derived for this regime.

The stability of the drops to coalescence is quantitatively characterized by the
dimensionless force parameter F̂ = F/(4πkTac0), the external force normalized by

Marangoni stresses. For F̂ > 1 Marangoni stresses cannot balance the external force;
thus, drop coalescence occurs on the fast time scale. The coalescence time normalized
by τ0 is independent of the viscosity ratio and initial gap width. The critical value
F̂ = 1 is universal – independent of the viscosity ratio and initial conditions. Drops
quickly separate for F̂ < 1− 1

2
π. This result is also general except for unusual initial

distributions of surfactant.
After the short-time evolution with 1 − 1

2
π < F̂ < 1, the force balance FM ≈ F is

achieved at a gap width εs which depends on the initial distribution of surfactant.
Thereafter, the system evolves on the slow time scale towards a long-time similarity
solution. The long-time surfactant distribution scales with the extent of the near-
contact region; for 1 > F̂ > 0.61, a shrinking surfactant-free clean spot forms. At
long times, surface backflow slows the approach of the drops and accelerates their
separation compared to the relative velocity of rigid particles. For drops pressed
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Figure 11. Long-time similarity profiles of (a) surfactant concentration and (b) interfacial velocity

for drops that are pushed together with different values of F̂ (as labelled). For a clean spot,
interfacial velocity is given by (3.9).

together by a subcritical force the gap drains exponentially at long times; coalescence
does not occur. A sharp stability transition is predicted for F̂ = 1.

Van der Waals attraction reduces the critical force parameter and blurs the stability
transition for coalescence. Equating van der Waals attraction to the external force
yields a characteristic gap width

εA =

(
A

6Fa

)1/2

(6.1)

for the range of van der Waals attraction, where A is the Hamaker constant; rapid
coalescence occurs for εA > εs. According to (4.16), an estimate of the critical force
parameter for coalescence is

F̂ = F̂MS (εA), (6.2)

where FMS depends on the initial distribution of surfactant. Adsorbed surfactant
may modify the van der Waals attraction between drops. Under these conditions, the
surfactant distribution calculated herein can be used to compute the attractive force.

Surfactant-covered drops have an elastic response to unsteady external forces be-
cause of energy stored in the surfactant distribution. For short-time displacements
from a uniform distribution of surfactant, the behaviour is analogous to a damped
nonlinear spring; generally, an irreversible two-time-scale relaxation process is ob-
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Figure 12. Same as figure 11 but for drops that are pulled apart.

served. For near-critical external forces, the stable long-time behaviour of surfactant-
covered drops is very sensitive to force fluctuations.

In general, the initial and boundary conditions for the lubrication description
presented herein must be supplied by a separate calculation for the outer flow. The
evolution preceding the lubrication regime may establish the long-time behaviour at
much larger gap widths than predicted by calculations that suppose a uniform initial
distribution of surfactant in the near-contact region. Boundary integral calculations
indicate that this occurs (Papadopoulos, B lawzdziewicz & Loewenberg 1996).

Surface diffusion, neglected herein, may significantly affect the behaviour of
surfactant-covered drops at long times and small gaps. For F̂ < 1, surface diffusion
provides a lubrication cutoff so that coalescence can occur in the absence of van der
Waals attraction (B lawzdziewicz, Wajnryb & Loewenberg 1998).

Drop deformation is important for larger drops and higher surfactant concentra-
tions. Currently, calculations are underway to explore the near-contact motion of
surfactant-covered deformable drops (Papadopoulos et al. 1996).

The analysis presented herein is valid to ε1/2 � λ � ε−1/2. An extension to highly
viscous drops λ > O(ε−1/2) is possible following the more general numerical method
of Davis et al. (1989). Accordingly, the flow field inside the drops is described by a
boundary integral formulation. These calculations would yield an O(ε1/2) correction
to our results for λ = O(1). Surfactant effects are less pronounced for λ = O(ε−1/2)
because Marangoni stresses are comparable to viscous stresses generated by flow
within the drops and low interfacial mobility hinders surfactant redistribution. In this
regime, the system evolves on a single time scale because τ0 ≈ τp.



Surfactant-covered drops 283

(a)

(b)

6

5

4

3

2

1
0 20 40 60 80 100

100

10–1

10–2

10–3

FM
F

ε
ε0

t/ôs0

0 20 40 60 80 100

Figure 13. Relaxation from long-time similarity solution with F̂ = 0.4, ε0 = 0.0005, and λ = 1
(τsp/τs0 = 25.6), (a) gap width, (b) force generated by Marangoni stresses: numerical solution (solid
curves), short-time approximation (dotted curves), final gap width (dashed line).
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Figure 14. Surfactant concentration profiles corresponding to conditions in figure 13 at different
times t/τs0 (as labelled). Numerical solution (solid curves), short-time approximation for ε = εs
(dotted curve).

Experimental studies are unavailable for a quantitative comparison to the predic-
tions presented in this article. A concentrated emulsion of closely packed spherical
drops under centrifugation should provide a suitable experimental system for testing
the stability predictions of our analysis for a uniform initial distribution of surfactant.
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Appendix A. Similarity solution for separating drops with near-critical
pulling force

According to (4.26), C(y) is everywhere negative for F̂ < 0. We seek an asymptotic
solution of (4.27) for |C(0)| � 1 with F̂ < 0. Given (4.29) and (4.45) it follows that
|C(y)| is everywhere small.

Inspection of (4.27) reveals that the nonlinear term is unimportant except for
ỹ = y/|C(0)| = O(1). An asymptotic solution C(y) was found by matching an outer
expansion

f(y) = |C(0)|1/2f0(y) + |C(0)|2f1(y) + O(|C(0)|)7/2, y � |C(0)|, (A 1)

to an expansion for the inner region

f(y) = f̃0(ỹ) + |C(0)|f̃1(ỹ) + O(|C(0)|)2, ỹ = O(1), (A 2)

where

f(y) = C(y)/C(0). (A 3)

Inserting the outer expansion (A 1) into (4.27) and solving the resulting linear
equations, we obtain

f0 =
a0

[y(2− y)]1/2
, (A 4)

f1 =
2a2

0

15

10− 35y + 30y2 − 10y3 + 2y4

(2− y)3y2
, (A 5)

where a0 is a constant. At leading order, the outer solution coincides with the
short-time solution (4.2) for large displacements ε/ε0 � 1 of the separating drops.

In terms of the inner variable (4.27) becomes

ỹ
df

dỹ
+
(
1− |C(0)| ỹ

) [ d

dỹ
(ỹf) +

d

dỹ

(
ỹ

d

dỹ
f2

)]
= 0. (A 6)

Inserting (A 2) into (A 6), expanding the solution for ỹ → ∞, and matching to the
outer expansion for y → 0 we obtain

f̃0 =
a0

(2ỹ)1/2
+

a2
0

6ỹ2
+ O(1/ỹ7/2), (A 7)

f̃1 =
a0

4

(
ỹ

2

)1/2

− a2
0

3ỹ
+ O(1/ỹ5/2), (A 8)

where f̃0(0) = 1, f̃′0(0) = 1
2

and f̃1(0) = f̃′1(0) = 0. In writing, (A 8) we have assumed

that the O(ỹ−1/2) term associated with the homogeneous solution of (A 6) at first-
order is absent from the solution. This assumption is supported by our numerical
calculations as explained below. Numerical integration of the leading-order inner
equation yields

a0 = 0.6334. (A 9)

From (A 1) and (A 4), we have

C(1) = −a0 |C(0)|3/2 + O(|C(0)|3), (A 10)
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From (4.17) and (A 3), we have

F̂ = 1− C(0)

C(1)

∫ 1

0

f(y) dy. (A 11)

which, with the help of (A 4) and (A 10), can be rewritten as

F̂ = 1− 1
2
π + ∆F̂ , (A 12)

where

∆F̂ = − 1

a0

∫ 1

0

[
|C(0)|−1/2f(y)− f0(y)

]
dy. (A 13)

By expanding

f0 =
a0

(2y)1/2

[
1 +

y

4
+ O(y2)

]
, y → 0, (A 14)

and inserting (A 1) and (A 2) into (A 13) we obtain

∆F̂ = −|C(0)|1/2
a0

{∫ ỹ∗

0

(
f̃0 −

a0

2ỹ)1/2

)
dỹ

+|C(0)|
[∫ ỹ∗

0

(
f̃1 −

a0

4

(
ỹ

2

)1/2
)

dỹ +

∫ 1

y∗
f1dy

]}
+ o

(
|C(0)|3/2

)
, (A 15)

where |C(0)| � y∗ � 1 and ỹ∗ = y∗/|C(0)|.
At zeroth order, (A 6) is integrated to yield∫ ỹ∗

0

f̃0 dỹ = ỹ∗
[
2f0(ỹ

∗) +
d

dỹ∗
f2

0(ỹ∗)

]
, (A 16)

which, combined with (A 7), gives∫ ỹ∗

0

(
f̃0 −

a0

(2ỹ)1/2

)
dỹ = −|C(0)| a

2
0

6y∗
+ O

(
|C(0)|/y∗

)5/2
. (A 17)

By integrating (A 5) and (A 8) we obtain∫ 1

y∗
f1 dy = a2

0

(
1

6y∗
+ 1

3
log y∗ + const

)
+ O(y∗), (A 18)

∫ ỹ∗

0

[
f̃1 −

a0

4

(
ỹ

2

)1/2
]

dỹ = −a
2
0

3
log
(
y∗/|C(0)|

)
+ const + O

(
|C(0)|/y∗

)3/2
. (A 19)

Inserting (A 17)–(A 19) into (A 15) yields

∆F̂ = |C(0)|3/2
(
−a0

3
log |C(0)|+ b

)
+ o

(
|C(0)|3/2

)
, (A 20)

where a0 is given by (A 9) and, by comparing (A 20) to the numerically obtained
similarity solution,

b = 0.5953. (A 21)

The inverse relation

|C(0)|3/2 = fs(∆F̂) (A 22)
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can be obtained by solving (A 20) iteratively; the first iteration yields

fs(∆F̂) =
∆F̂

− 2
9
a0 log ∆F̂ + b

. (A 23)

Accurate convergence is obtained with several iterations. The results indicate that
|C(0)| = 0 for ∆F̂ = 0.

A similar analysis can be applied to (4.54) in the case when c̄(y) is described by
the long-time similarity solution for the near critical pulling force. From (4.54), (A 3),
(A 10), and the relation ∫ 1

0

[1− 2(1− y)2] f0(y) dy = 0 (A 24)

we obtain

− ε0

δF̂

δε
=

1

a0

∫ 1

0

[1− 2(1− y)2]
[
|C(0)|−1/2f(y)− f0(y)

]
dy. (A 25)

This relation is decomposed into a sum of integrals over the inner and the outer
regions, in analogy to the decomposition (A 15). The expansions (A 1) and (A 2)
with (A 4)–(A 5) and (A 7)–(A 8) are used to evaluate the integrals. Combining the
leading-order results yields

− ε0

δF̂

δε
= |C(0)|3/2

(
−a0 log |C(0)|+ b1

)
+ o

(
|C(0)|3/2

)
, (A 26)

where a0 is given by (A 9) and, by comparing formula (A 26) to the numerically
obtained similarity solution,

b1 = 0.8986. (A 27)

An O(ỹ−1/2) term in (A 8) would generate an O(|C(0)|) terms in (A 20) and (A 26)
which is inconsistent with our numerical calculations. In principle, a detailed analysis
of the first-order solution of (A 6) could be used to rigorously justify the absence of
this term in (A 8).

Appendix B. Two-point approximations

Consider a function q(F̂) which is regular at F̂ = 0 and has a known singularity
qs(F̂) at F̂ = 1 − 1

2
π. The relative particle velocity Ū and the concentration at the

centre of the near-contact region c̄(0) in a state described by the similarity solution are
examples of such functions. Another example is the quantity −ε−1

0 δε/δF̂ , describing
the response of the similarity solution to fluctuations of the external force.

The two-point approximation

q(F̂) ≈ qs(F̂) +

n∑
i=0

[
q(i)(0)− q(i)

s (0)
] F̂ i
i!
, (B 1)

where the superscript (i) denotes the ith derivative with respect to F̂ , has a correct
asymptotic behaviour at F̂ = 1 − 1

2
π and correct first n derivatives at F̂ = 0. Often

approximation (B 1) has much better global accuracy than the asymptotic expression
qs(F̂) or the truncated Taylor series expansion of q(F̂).

With the help of the expansions (4.35) and (4.40) the approximation (B 1) with n = 1
can be explicitly constructed for Ū and with the help of the expansions (4.36) and
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(4.42) for c̄. For −ε−1
0 δε/δF̂ , the approximation (B 1) with n = 2 can be obtained from

(4.55) and (4.57). As illustrated in figures 5 and 6 the approximations are accurate
for all negative subcritical values of F̂ and for moderate positive values F̂ .
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